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ABSTRACT
Motivation: Accurate gene structure annotation is a
challenging computational problem in genomics. The best
results are achieved with spliced alignment of full-length
cDNAs or multiple expressed sequence tags (ESTs) with suf-
ficient overlap to cover the entire gene. For most species,
cDNA and EST collections are far from comprehensive. We
sought to overcome this bottleneck by exploring the possibility
of using combined EST resources from fairly diverged species
that still share a common gene space. Previous spliced align-
ment tools were found inadequate for this task because they
rely on very high sequence similarity between the ESTs and
the genomic DNA.
Results:Wehave developed a computer program, GeneSeqer,
which is capable of aligning thousands of ESTs with a long
genomic sequence in a reasonable amount of time. The
algorithm is uniquely designed to tolerate a high percent-
age of mismatches and insertions or deletions in the EST
relative to the genomic template. This feature allows use of
non-cognate ESTs for gene structure prediction, including
ESTs derived from duplicated genes and homologous genes
from related species. The increased gene prediction sensitiv-
ity results in part from novel splice site prediction models that
are also available as a stand-alone splice site prediction tool.
We assessed GeneSeqer performance relative to a standard
Arabidopsis thaliana gene set and demonstrate its utility for
plant genome annotation. In particular, we propose that this
method provides a timely tool for the annotation of the rice
genome, using abundant ESTs from other cereals and plants.
Availability: The source code is available for down-
load at http://bioinformatics.iastate.edu/bioinformatics2go/gs/
download.html. Web servers for Arabidopsis and other
plant species are accessible at http://www.plantgdb.org/
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cgi-bin/AtGeneSeqer.cgi and http://www.plantgdb.org/cgi-bin/
GeneSeqer.cgi, respectively. For non-plant species, use http://
bioinformatics.iastate.edu/cgi-bin/gs.cgi. The splice site pred-
iction tool (SplicePredictor) is distributed with the GeneSeqer
code. A SplicePredictor web server is available at http://
bioinformatics.iastate.edu/cgi-bin/sp.cgi
Contact: vbrendel@iastate.edu
Supplementary information:http://www.plantgdb.org/AtGDB/
prj/BXZ03B

INTRODUCTION
Annotation of gene structure in eukaryotic genomes currently
involves both computational and experimental approaches.
Because of time and expense constraints, initial annotation
mostly relies on ab initio gene prediction based on statist-
ical modeling of exon and intron features. The best of these
methods have been estimated to achieve about 80% sensitivity
and specificity at the exon level, but the success rate is much
lower at the level of entire gene structure, with typically less
than half the predictions entirely accurate (Pavy et al., 1999;
Rogic et al., 2001). In practice, a combination of different pro-
grams appears to be more successful than reliance on a single
program (Pavy et al., 1999; Murakami and Takagi, 1998).
Spliced alignment of potential homologous protein sequences
to genomic DNA is a complementary approach to ab initio
gene prediction that gives better accuracy, provided a close
enough homolog of the potential gene product is available
(Gelfand et al., 1996; Usuka et al., 2000; Mathé et al., 2002).
The most direct experimental evidence for gene structure

comes from sequencing full-length cDNAs with subsequent
spliced alignment of the cDNA sequences to the genomic
DNA. An added advantage of this approach is that suffi-
cient cDNA sampling under different conditions will reveal
transcript isoforms arising from alternative splicing or altern-
ative transcription start or termination points. An intermediate
step in gene discovery is sequencing of expressed sequence
tags (ESTs), which typically correspond to partial rather
than full-length cDNAs. Clustering and assembly of ESTs
to potential full-length transcripts is commonly pursued to
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estimate the gene space of a species, using methods that rely
on pair-wise sequence similarities (Bouck et al., 1999; Liang
et al., 2000; Pertea et al., 2003; Kalyanaraman et al., 2003).
However, direct alignment to genomic DNA, when possible,
is more accurate and informative (Zhu et al., 2003).
The alignment of ESTs to genomic DNA is non-trivial for a

number of reasons. ESTs are usually deposited as single-pass
sequencing products, increasing the conventionally accepted
rate of sequencing errors and ambiguous base determinations.
ESTs are typically sampled from a large variety of origins that
represent a range of subspecies, tissue types and conditions,
thus leading to a heterogeneous sequence view confounded
by polymorphisms and paralogous genes. In addition, sequen-
cing artifacts (e.g. chimeras), sample contaminations and
complex patterns of alternative splicing further complicate
the alignment task.
A number of tools that address this alignment problem are

now available and provide adequate solutions for some of
these needs in more narrowly defined context. The under-
lying algorithms can be categorized into two groups with
respect to the way they generate spliced alignments. One
category involves heuristic, BLAST-like methods for the
initial alignment and includes the tools sim4 (Florea et al.,
1998), Spidey (Wheelan et al., 2001), BLAT (Kent, 2002)
and Squall (Ogasawara andMorishita, 2002). Typically, these
programs find matching segments at high stringency using
BLAST (Altschul et al., 1997) or a variant, with subsequent
output parsing to favor canonical splice sites. EST_GENOME
(Mott, 1997), dds/gap2 (Huang et al., 1997) and GeneSeqer
(Usuka et al., 2000) belong to another category of programs
that implement a full dynamic programming approach to
derive the optimal score and spliced alignment, allowing for
within-exon insertions and deletions. In GeneSeqer, potential
splice sites are differentially scored according to independ-
ent splice site prediction methods. Consideration of predicted
splice site strength was shown to improve the performance
of the algorithm in the case of imperfect sequence matching
as a result of sequencing errors or sequence polymorphisms
(Usuka et al., 2000).
There are several limitations in the BLAST-like spliced

alignment methods. First, short exons (about 20 or fewer
bases) are generally missed because they do not qualify as
high-scoring segment pairs. Second, reliable alignments are
limited to cognate ESTs with low sequencing error rates. For
example, sim4 reports only the highest scoringmatch for each
EST query, and TAP, a useful transcript assembly tool based
on sim4 (Kan et al., 2001), recommends a threshold of 92%
overall identity for any such alignment to be included into the
transcript assembly. In addition, the simple adjustment for
exon–intron boundaries to conform to canonical splice sites
whenever possible, as used in most of spliced alignment pro-
grams, further restricts application to unequivocal alignments
and can lead to inconsistencies (e.g. sim4/TAPallow the stand-
ard GT–AG introns in conjunction with a complementary

CT–AC intron in the same alignment, confounding assign-
ment of the true transcript orientation). These limitations
may be inconsequential when the need is for fast, reliable
alignment of ESTs or cDNAs that, based on high sequence
similarity, can be unambiguously assigned to a unique chro-
mosomal locus; however they render these algorithmshelpless
in the situations discussed here.
EST sampling is sparse for most species when compared

with the large human and mouse EST collections. However,
if ESTs from related taxonomic groups could be successfully
employed for gene identification, the EST resources would
appear much more impressive. To date, there are well over
two million ESTs from all plant species combined. Because
of the inclusion of sophisticated splice site models and
exhaustive alignment with a dynamic programming approach,
the GeneSeqer algorithm affords a promising approach in
attempts tomakeuse of this resource. For example, GeneSeqer
was recently shown to be very successful in identifying very
short exons in Arabidopsis thaliana (Haas et al., 2002) and
improving Arabidopsis genome annotation (Zhu et al., 2003).
Here we report generalization of GeneSeqer to exploit hetero-
geneous EST sources for plant genome annotation by deriving
a consensus gene structure prediction from multiple, possibly
imperfect sequence alignments.
The greater accuracy afforded by the dynamic programming

approach adopted in GeneSeqer is obtained at the expense
of greater computational efforts. Practical implementation of
the algorithm requires efficient selection of restricted genomic
DNA regions and matching ESTs from a typically large EST
collection in order tominimize or eliminate the computer time
spent on deriving locally optimal but insignificant alignments.
In this study, we present a string matching scheme based on
pre-processing of the input EST dataset that allows fast target
selection for detailed analysis by the dynamic programming
algorithm. The previous implementation of the GeneSeqer
algorithm was also modified to incorporate Bayesian stat-
istical models for splice site prediction similar to models
introduced by Salzberg (1997). We discuss applications to
A.thaliana and rice genome annotation, which suggest that the
novel algorithm approach provides a practical and powerful
tool for accurate gene structure identification.

SYSTEMS AND METHODS
Programs used
The dynamic programming subroutines of GeneSeqer were
described previously (Usuka et al., 2000; Usuka and
Brendel, 2000). The source code of the program is avail-
able at http://bioinformatics.iastate.edu/bioinformatics2go/
gs/download.html. The data and some of the figures in this
article were produced with the specialized GeneSeqer web
servers at http://www.plantgdb.org/cgi-bin/AtGeneSeqer.cgi
(for Arabidopsis) and http://www.plantgdb.org/cgi-bin/
GeneSeqer.cgi (all plant species; Schlueter et al., 2003).
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Sim4 (Florea et al., 1998) was downloaded from http://
globin.cse.psu.edu/. TAP (Kan et al., 2001)was obtained from
http://sapiens.wustl.edu/~zkan/TAP/. The Spidey (Wheelan
et al., 2001) executable was obtained from http://www.
ncbi.nlm.nih.gov/IEB/Research/Ostell/Spidey/spideyexec.
html. The BLAT (Kent, 2002) executable was compiled from
the source code made available at Jim Kent’s Web page,
http://www.soe.ucsc.edu/~kent/src/

Spliced threading
The GeneSeqer algorithm solves the problem of ‘threading’
an EST or cDNA into a genomic DNA sequence such that
each nucleotide in the matching genomic DNA segment is
consistently assigned exon or intron status. The threading
preferentially selects high-scoring splice sites unless strongly
contradicted by sequence similarity supporting lower scoring
sites. An optimal alignment score is calculated by dynamic
programming as described previously (Usuka et al., 2000). In
similar fashion, GeneSeqer also derives the optimal threading
of a protein sequence onto the inferred translation of a gen-
omic DNA segment, allowing gene prediction by similarity
to putative homologs of the given locus (Usuka and Brendel,
2000).

Scoring
A number of parameters influence the optimal alignments,
including standard scores for identities, mismatches and dele-
tions within exon alignments. In addition, persistence within
and switching between exon and intron states is governed by
transition probabilities derived from splice site prediction val-
ues along the genomic sequence (Usuka et al., 2000; Usuka
and Brendel, 2000). These values are calculated for all posi-
tions in the genomic sequence prior to the spliced alignment.
Precisely, a default donor site values of 0.00005 is assigned for
any GT and 0.00002 for any GC or AT (similarly, 0.00005 for
any AG and 0.00002 for any AC as potential acceptor sites).
Theother dinucleotides have adefault score 0.000001as donor
or acceptor site value. These default values are replaced by
2× (P − 0.5) whenever that value is greater, where P is the
respectiveBayesian a posteriori splice site probability determ-
ined frommodels derived as described below. In addition, sites
matching the U12-type intron consensus sequence ATCCTT
downstream of the GT or AT donor site dinucleotide (Zhu and
Brendel, 2003) in six or five positions are scored 0.99 and 0.9,
respectively, to accommodate these special cases, which are
not recognized by the Bayesian models for conventional U2-
type introns. Empirically, the chosen scaling seems to give
a good balance between scoring for sequence similarity and
scoring for splice site consensus (the balance can be changed
easily by providing the GeneSeqer program at run time with
other than default parameters). We should emphasize that the
incorporation of good splice site models is critical in the range
of applications considered here when sequence divergence is

deliberately allowed to be above the level expected to result
from mere sequencing errors and polymorphisms.
The quality of a particular optimal alignment is assessed

by similarity and coverage scores. Similarity scores are
calculated as normalized alignment scores and are derived
separately for each exon, the 50-base exon flanks of each
predicted intron and the entire alignment by averaging over
all exons of at least 50 bases. Note that with default paramet-
ers, in the absence of insertions/deletions a similarity score
of s would correspond to 0.5 × (1 + s) × 100% sequence
identity. The coverage score gives the length of the match-
ing region relative to the entire EST length (i.e. a completely
matched EST would have coverage score 1.0).

Splice site probability models
To train species-specific splice site models for use in
GeneSeqer, sequences of eukaryotic genes with multiple cod-
ing exons were taken from an early version of the ExInt
database (Sakharkar et al., 2000; Deutsch and Long, 1999)
kindly provided by the authors. This database represents a
non-redundant subset of GenBank Release 106. For each
annotated intron, we retrieved the flanking 50 nucleotides
upstream and downstreamof the consensusGT andAGdinuc-
leotides at the 5′ and 3′ intron ends, respectively. Introns
with non-consensus dinucleotide ends were not selected, and
entries for which the sequence information for the 50 nucle-
otide flanks was incomplete or ambiguous were removed. All
selected sequence segments were pair-wise compared, and
only one sequence was retained from any set of sequences
that were identical at the peptide level for the in-frame transla-
tion of the exon parts. Also excluded were sites with in-frame
stop codons in the annotated exon parts. The number of sites
thus obtained for 10 different species ranged from a few hun-
dred for fungal species tomany thousands forCaenorhabdites
elegans, A.thaliana and human beings.
All splice sites were assigned a phase label depending on

the site of disruption of the open reading frame:

Sequence NNN | GT . . . AG | NNN

Phase 1 sites 1 2 0 1 1 1 2 0
Phase 2 sites 2 0 1 2 2 2 0 1
Phase 0 sites 0 1 2 0 0 0 1 2

The donor and acceptor sites of introns not splitting codons
were assigned phase 1, the sites of introns disrupting codons
between the first and second codon position were assigned
phase 2 and sites disrupting codons between the second and
third codon position were assigned phase 0. GT and AG
dinucleotides within annotated exons or internal to annot-
ated introns were considered ‘false’ sites. Non-redundant sets
of false sites with complete 50 nucleotide flanks were com-
piled in the same way as the sets of true sites. Within-exon
false sites were classified by phase as displayed above.
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Fig. 1. Information plot around true and false splice sites in C.elegans. The information content Ii was calculated according to Equation (1)
in the text. The central consensus dinucleotides have information content 2 (plot curtailed). Dataset designations: T1, T2, T0, true splice sites
in phase 1, 2 and 0, respectively; F1, within-exon sites in phase 1; Fi, within-intron sites; GT, true and false donor sites; AG, true and false
acceptor sites.

For the purpose of model training, the sets of within-exon
false sites were reduced by random sampling to contain
the same number of sites as the corresponding sets of
true sites. The set of within-intron false sites was reduced
to the largest size of the three phase-specific sets of true
sites.

The extent of the splice signal was determined for each set
of sites on the basis of information content plots (White et al.,
1992; Fig. 1). Precisely, for each position i for the aligned
sequences, we calculated the quantity

Ii = 2+
∑

B∈(A,C,G,T )

fiB log2 (fiB), (1)
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here, fiB is the frequency of nucleotide B in position i. Thus,
a position in which a single nucleotide occurs exclusively has
maximal information content 2, whereas a position with equal
representation of all nucleotides has minimal information
content 0.
To avoid small sample effects or potential sampling biases,

100 bootstrap samples were derived from each dataset, each
sample consisting of 500 sites drawn randomly with replace-
ment from the original set. For each sample, the mono- and
dinucleotide frequencies were determined in each position.
The frequencies, fiB were obtained as the averages of the
frequencies observed in the 100 samples.
The splice signal extentwas defined as themaximal continu-

ous window around the GT and AG consensus dinucleotides
for which no three consecutive positions have information
content,

Ii ≤ I + 1.96 σI , (2)

here, I is the average information content over all posi-
tions i more than 20 nucleotides away from the consensus
dinucleotide (considering the base value, independent of the
actual splice signal), and σI is the average sample standard
deviation of I .
As seen in Figure 1, the information content reflects both the

splice site signal and the 3-base periodicity in coding regions.
Because of the degeneracy of the genetic code, the third codon
position is much less restricted by amino acid coding con-
straints. Instead, this position tends to be highly biased toward
bases consistent with the overall G+C-content of the cognate
genomeor isochore (e.g. Sharp andMatassi, 1994). In ourfinal
models for splice site prediction, the splice site signal window
was extended in both directions in order to include the 3-base
periodicity signature to more clearly distinguish false within-
exon and within-intron sites from true splice sites (see also
Hebsgaard et al., 1996).
Dinucleotide frequencies in each position of the signal

windows were used as parameters in a Bayesian prob-
ability model for signal-window sized sequences. Let
S = s−ls−l−1, . . . , s−1 GT s1s2, . . . , sr denote the sequence
around a potential donor site GT. We consider seven pos-
sible classifications of this sequence: the GT could be a true
donor site in phase 1, 2 or 0, or the GT could occur within
a coding exon in any of the three phases, or the GT could
occur internal to an intron. Let these hypotheses be denoted
by T 1, T 2, T 0,F1,F2,F0 and Fi, respectively. Then

P {H
∣∣S} = P {H }P {S

∣∣H }
∑

H P {H }P {S
∣∣H } , (3)

where H indexes the seven hypotheses. The likelihoods
P {S|H } were calculated according to a first-order Markov
model with transition probabilities τiAjB = fiAjB/fiA, where
fiAjB is the frequency of dinucleotide AB in positions ij. Addi-
tionally, we explored a two-class model with cases T =
T 1 + T 2 + T 0 and F = F1 + F2 + F0 + Fi. In each

case, a site S was classified according to the maximal value
among the posterior probabilities P {H |S}. Prior probabilities
were set to equal weights for all cases.
Performance statistics were derived following Brunak et al.

(1991), using the notation of Snyder and Stormo (1995). Let
‘positive’ denote acceptance and ‘negative’ rejection of a site
as splice site. The number of predicted positives, PP, con-
sists of TP, true positives (real sites) and FP, false positives
(non-sites). Similarly, the number of predicted negatives, PN,
comprises FN, false negatives (real sites of low probability
score) and TN, true negatives (non-sites). Let AP = TP+FN
be the number of actual positives (true sites), and let AN =
FP+TN be the number of actual negatives (non-sites). Thus,
α = FN/AP and β = FP/AN. Sn = TP/AP = 1− α meas-
ures the sensitivity of the method: what fraction of the real
sites are correctly predicted? Sp = TP/PP measures the spe-
cificity of the method: what fraction of the predicted positives
are real sites?
Note that Sp = 1 − (AN/PP)β will typically be a better

measure of performance than β because in practical applica-
tions (prediction of sites in genomic DNA) the population size
of false sites would generally be much larger than the number
of true sites, which will inflate even seemingly small values
of β. On the other hand, values of Sp are hard to compare
across datasets with widely differing sample sizes of actual
negatives. For this reason, we use the normalized specificity.

σ = 1− α

1− α + β
. (4)

σ is identical to Sp for balanced datasets with AN = AP. In
general,

SP = 1− α

1− α + rβ
, r = AN

AP
. (5)

A common decision strategy for accepting the null hypothesis,
H0 = T , is based on the Bayes Factor (BF),

BF = P {T
∣∣S}

(1− P {T
∣∣S})

/
P {T }

(1− P {T }) , (6)

(for recent review, see Kass and Raftery, 1995). In words, BF
is equal to the ratio of the posterior odds ofH0 to its prior odds.
For the 2-class model, BF is computationally equivalent to the
likelihood ratio P {S|T }/P {S|F }. For the 7-class model,

BF =
∑

x∈(1,2,0) P {Tx}P {S
∣∣Tx}

∑
x∈(1,2,0) P {Tx}

/ ∑
x∈(1,2,0,i) P {Fx}P {S

∣∣Fx}
∑

x∈(1,2,0,i) P {Fx} ,

(7)
which is the ratio of the average likelihood of the observed
sequence, S under the two alternative hypotheses. Kass and
Raftery (1995) suggest a critical value,

c = 2 ln BF, (8)
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Fig. 2. Sensitivity (Sn) and normalized specificity (σ ) as a function of BF. The BF may be used as a threshold for accepting a predicted splice
site as true or not. Higher BF values increase specificity at the expense of sensitivity. The values were derived on the entire non-redundant
sets of true and false sites. X-axis values are c = 2 ln BF.

for evaluation of evidence in favor of H0, with approximate
interpretation of ‘positive evidence for H0’ for values in the
range 2–6, ‘strong support forH0’ for values in the range 6–10
and ‘very strong support for H0’ for values exceeding 10.
Sample performance statistics in dependence on c are shown
in Figure 2.
As an independent test of the accuracy of the method, we

also implemented themodels in our SplicePredictor tool along
with the earlier logitlinear models (Kleffe and Brendel, 1998).
Consideration of local optimality of splice site scores signi-
ficantly increases prediction specificity (Brendel and Kleffe,
1998; Pertea et al., 2001). A simple method for local pruning
of suboptimal predicted sites was implemented as the default
option in SplicePredictor. Briefly, within the vicinity of high
scoring sites (Bayes factor at least 6.0, no well scoring sites
of the opposite type close by) lower scoring sites remain
unreported. We assessed the accuracy of splice site predic-
tion using this method on a subset of 329A.thaliana genes
from the set compiled by Pertea et al. (2001) by restricting

the set to only those genes with EST confirmation for all
splice sites and confining the non-coding gene flanks to at
most 500 nucleotides on both ends. SplicePredictor perform-
ance was comparable with GeneSplicer (Pertea et al., 2001),
which (with default settings) achieves somewhat lower sens-
itivity but higher specificity (program kindly supplied by the
authors).

Evaluation
To benchmark the prospects and limits of gene prediction
by spliced alignment, we evaluated the GeneSeqer perform-
ance on the AraSet Arabidopsis gene set distributed for
such purposes by Pavy et al. (1999), available at http://
www.psb.ugent.be/bioinformatics/GeneComp/. This set con-
sists of 74 contigs comprising 2–4 genes each, 168 genes
and 859 introns in total. Spliced alignments were based on
the mapping of 176 195 Arabidopsis ESTs that were down-
loaded from the NCBI dbEST database (Boguski et al., 1993,
http://www.ncbi.nlm.nih.gov/dbEST/).
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Fig. 3. Decision tree for post-processing of GeneSeqer spliced alignments. Capitalized items are parameters supplied in a parameter file.
Weakly supported terminal exons are removed successively from both ends.

To evaluate prediction accuracy at the intron level, we
define correct introns, overlapping introns, wrong introns and
missed introns as in Pavy et al. (1999). Thus, a predicted
intron identical to an annotated intron is classified as a ‘cor-
rect intron’. An ‘overlapping intron’ refers to a predicted
intron overlapping with some annotated intron, but with a
different 5′ and/or 3′ splice site. A ‘wrong intron’ refers to
a predicted intron overlapping with annotated exons, but not
with annotated introns. Both overlapping introns and wrong
introns are counted as incorrect (false positive) predictions
(note that this assumes a lack of alternative splicing in the test
set). ‘Missed introns’ are annotated introns that are not over-
lapped by any predicted intron (false negatives). Because only
introns in coding sequences (CDS) are annotated in AraSet,
introns predicted by spliced alignment outside of CDS cannot
be evaluated. Thus, sensitivity at the intron level is defined as
(number of correct introns/number of annotated introns), and
specificity is determined as (number of correct introns/number
of predicted introns in CDS).

ALGORITHM
Quality adjustments
By default, GeneSeqer will align any EST to a genomic
locus with which it shares at least partial significant sim-
ilarity as determined in the fast screen for matching loci
described below. This may result in optimal scoring, but
clearly poor alignments over the entire EST when the sig-
nificant similarity is limited to disjoint segments of the
EST. While such alignments can still be useful to indic-
ate exon potential in the matching genomic segments (if
not an entire gene structure), we have now implemented in
the GeneSeqer program a post-processing step that quality-
adjusts such alignments based on user-specified parameters.
Briefly, a predicted gene structure is assessed exon by exon,
starting with the terminal exons, with weakly matching ter-
minal exons recursively being eliminated. The elimination
process involves a decision tree (Fig. 3). For example, the
3′-most exon in a multiple-exon predicted gene structure
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is quality-adjusted as follows: (1) Is the exon score below
the parameter POOR_EXON_SCORE (default: 0.7)? If yes,
and (2) the exon length is at most TINY_EXON bases
(default: 20), the exon is removed from the alignment. If
the exon is longer and (3) the acceptor site score is at most
POOR_ACPTR_SCORE (default: 0.5) or (4) the length of
the intron is at least LONG_INTRON bases (default: 300),
the exon is removed. If conditions (3) and (4) for elimination
are not met, the exon is retained unless the upstream exon is to
be eliminated by the same criteria. To complete the decision
tree, exons that (1) score above POOR_EXON_SCORE are
retained if, (2), they are of length greater than TINY_EXON.
However, they are eliminated if they are shorter and succes-
sively either (3) the acceptor score is poor, (4) the intron is
long, or the upstream exon isweak. Predicted 5′ gene structure
ends are similarly adjusted.
The parameters for this quality adjustment are entirely

empirical and should be changed appropriate to a specific
alignment task. For example, if the alignment is of a cog-
nate cDNA to its genomic origin, short terminal exons may
be missed with default parameters that are selected to avoid
chance matches in large-scale mapping of non-cognate ESTs.
To provide most flexibility, the GeneSeqer text display of an
alignment includes all the exons, but only the quality-trimmed
parts are used for consensus gene prediction (see below).

Strand selection
Based on sequence similarity alone, a spliced alignment could
be made equally with either strand of a genomic DNA. For
multi-exon alignments, GeneSeqer orients the alignment to
maximize the average splice site score. For example, the
alignments for the example displayed in Figure 4 assign high
splice site scores for introns two and three, thus aiding in the
detection of the first intron as anAT–AC intron in the same ori-
entation. In ambiguous cases, occasional retention of a poly-A
tag in the EST sequence may indicate the direction of tran-
scription. For single exon alignments, GeneSeqer assigns a
putative transcription orientation based on overlap withmulti-
exon alignments as described next. In general, no attempt is
made to use annotated orientation, if available, because we
have found such annotation not always reliable. However, a
particular alignment orientation can be enforced at run time.

Consensus gene structures
A critical step in our strategy to predict gene structure by
spliced alignment is the derivation of a consensus gene
structure prediction frommultiple, possibly low scoring, over-
lapping spliced alignments. If the resulting gene structure
spans multiple-exons and contains an open reading frame
across these multiple-exons, confidence in the prediction
should be very high because the GeneSeqer algorithm (unlike
ab initio gene prediction programs) does not score in any way
for coding frame consistency in the initial alignment step.
Figure 4 provides a typical example, discussed below.

Determination of consensus gene structures in our algorithm
is a multi-step process. First, all EST alignments are clustered
into predicted gene locations (PGLs) based on genomic loc-
ation. This clustering is achieved by going through all the
alignments by increasing left-point coordinate. Clusters are
separated by gaps of at least JOIN_LENGTH bases, a para-
meter that can be changed at run time (default: 300). An
exception to this is made if a new alignment is of opposite
orientation compared with the current PGL; in this case, a
new PGL is assigned. Single exon alignments are displayed
in the orientation of their associated PGL. If a PGL consists
entirely of single exon alignments, then the orientation is
determined first by the presence of any potential poly-A tags
and second by choosing the orientation that gives the longest
open reading frame. It is clear that intergenic regions less
than JOIN_LENGTH may cause problems, but empirically
these rules seem to work very well [see Zhu et al. (2003), for
extensive applications to Arabidopsis].
Within each PGL, alternative splicing would result in

inconsistent predicted gene structures (PGSs) from individual
ESTs. This is represented in the GeneSeqer output by mul-
tiple alternative gene structures (AGSs) within a single PGL.
An example is given in Figure 5. Assembly of AGSs pro-
ceeds left to right, with each PGS added into the current
AGS as long as its exon/intron assignments are consistent
with the current AGS. Otherwise, a new AGS is started. The
alignment ends of an AGS may be slightly adjusted to fit a
PGS. This adjustment eliminates wrong alternative splicing
predictions that would otherwise result from weak, random
matching of EST end sequences, which are typically of
lower sequence quality. The GeneSeqer output only indic-
ates the alternative transcript isoform fragments confirmed
by spliced alignment but does not further process these frag-
ments to assemble all potential full-length transcript isoforms.
However, the output could easily be parsed and re-formatted
for input into the TAP program (Kan et al., 2001) for this pur-
pose (currently, TAPuses sim4 spliced alignments by default).
Haas et al. (2003) recently introduced an alternative algorithm
to generate maximal alignment assemblies.

Fast screen for matching ESTs
Efficient use of EST evidence for genome annotation requires
mapping large EST collections onto BAC-size genomic DNA
segments. Because dynamic programming is computation-
ally prohibitive for such large problems, a fast screen must
be implemented to select promising EST matches for gene-
sized genomic segments. In the absence of very long introns,
the dynamic programming algorithm can then be applied
to the selected DNA input (the case of long introns can
be handled by more sophisticated screening that eliminates
presumed intron-internal sequences; not pursued here). For
GeneSeqer, we have implemented the suffix array method
of Manber and Myers (1993) for pre-processing of the EST
database. Note that for applications in which the genomic
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Fig. 4. Gene structure annotation for a putative rice gene on chromosome one. The schematic displays of the GeneSeqer spliced alignments
were generated with the GeneSeqer Web server at the PlantGDB site (http://www.plantgdb.org/cgi-bin/GeneSeqer.cgi; Schlueter et al., 2003).
The scale refers to the numbering of the BAC sequence deposited in GenBank as accession AP003271. GenBank CDS annotation is shown in
light blue, with solid boxes corresponding to exons and thin lines corresponding to introns. The arrow indicates the direction of transcription.
The same convention is used for EST spliced alignments (red), alternative gene structures (green) derived from consistently overlapping
EST spliced alignments, long open reading frames (orange) and protein spliced alignments (purple). Upper panel: Spliced alignment of nine
rice ESTs confirms the five 3′ most exons of the annotated gene structure, but is inconclusive with respect to the 5′ end of the gene. Lower
panel: Spliced alignment with 53 barley ESTs suggests a seven-exon gene structure (green), which encodes a single long open reading frame
(orange). The translation product is highly similar to the Arabidopsis gene At3g53520 product, a UDP-glucuronic acid decarboxylase, and
direct spliced alignment of the Arabidopsis protein supports the same gene structure (purple). A protein database search showed that the rice
homolog has been deposited as GenBank accession BAB84333.

DNA query is fixed (e.g. annotation of a complete genome),
additional pre-processing the genomic DNA sequencemay be
considered.
Three parameters determine the outcome of the initial

screen for matching ESTs. The GeneSeqer -x wsize option

specifies the minimal exact match size for successful exten-
sion (typically,wsize is set to 12–16; higher values allowmuch
faster screening for high quality matches only). Precisely, the
genomic DNA query is processed along the 5′ to 3′ direc-
tion, with each consecutive wsizemer match against the EST
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Fig. 5. Alternative gene structure prediction for AraSet entry seq62 representing the Arabidopsis At4g37070 gene. Symbols and colors are
as explained in the legend to Figure 4. In addition, GenBank mRNA annotation is shown in dark blue. The eight matching ESTs (red) were
assembled into three consistent transcript fragments (green). The first intron has two alternative donor sites, supported by two and three ESTs,
respectively. Note that the GeneSeqer program does not attempt to display all possible full-length transcript isoforms. However, inspection of
the open reading frames (orange) suggests that the gene may have two transcript isoforms differing only in the first donor site, but maintaining
the reading frame such that the two protein isoforms differ only by an additional 11 amino acids in the longer protein.

database added to a set of linked lists that store match inform-
ation for each specific EST. As the linked lists grow, the
matches from each individual EST are continuously merged
into high-scoring segment pairs (HSPs) that allow for small
insertions and deletions in both genomic DNA and EST. The
-y minqHSP option sets the minimal score for HSPs to be
considered. Related HSPs are then further chained together
to define matching regions between the genomic DNA and
the specific EST using the algorithm of Pearson and Lipman
(1988), with a minor penalty for long gaps in the genomic
region (possible introns). These two steps are analogous to the
first two steps in the algorithm applied by sim4 (Florea et al.,
1998). However, sim4 only utilizes the best scoring chain for
each EST, whereas multiple non-intersecting chains with sig-
nificant scores higher than a cutoff value would be selected in
GeneSeqer. This allows a single EST to be matched to differ-
ent genomic loci. This property is crucial for the applications
discussed here. The cognate EST location is easily identi-
fied as the highest scoring match, but, in addition, an EST
can often be successfully used to identify gene structure in
a duplicated locus, in particular a locus with potentially low
cognate EST representation (Zhu et al., 2003). The cutoff
value for successful HSP chains is specified by the GeneSeqer
-z minqHSPc argument. Eachpromising region is then slightly
expanded to allow for uncertainties at the ends, and the full
dynamic programming alignment is applied to this genomic
DNA region and the entire EST sequence.

Complexity
A typical application of GeneSeqer is to map a large EST
collection (total sequence length M) to a single genomic
sequence of length n. The whole process of EST mapping
consists of three parts: construction of the suffix array for
the EST sequences, genomic localization (fast screen with
GeneSeqer option -x wsize), and spliced alignment. The run

time for building the suffix array for ESTs is O(M · logM)

using the algorithm of Manber and Myers (1993). This com-
putational time is typically negligible because a large number
of ESTs are usually pre-processed to build the suffix array,
which avoids potential overhead in repeated small-scale ana-
lyses. The genomic localization step is very fast with run time
O[n · (wsize+ logM)], based on a search algorithm for suf-
fix arrays using longest common prefixes (Gusfield, 1997).
Therefore, the computation for large-scale mapping is dom-
inated by the cost for the spliced alignment part and thus is
linearly proportional to the expected number of alignments
and the square of the average alignment length.

RESULTS AND DISCUSSION
Spliced alignment with heterologous ESTs
Figure 4 illustrates the application of spliced alignment for
gene structure annotation. The upper panel shows nine PGSs
with rice ESTs (red) that result in three disjoint AGSs
(green). The complete alignments are available as Supple-
mentary information at http://www.plantgdb.org/AtGDB/prj/
BXZ03B/atac/gs_sorted-output-Ex1_top.html. The three
AGSs are supported by similarity scores of about 0.8, 0.9
and 0.95, respectively. While the 3′-terminal exons of the
annotated gene structure are confirmed by spliced alignment,
contradictory results are obtained at the 5′ end. This issue is
resolved when ESTs from plants other than rice are added.
Using the GeneSeqer Web service at PlantGDB (Schlueter
et al., 2003), a total of 266 ESTs could be significantly
aligned in this region. The lower panel in Figure 4 depicts
the results for a subset of these ESTs, all derived from barley.
Several of these ESTs bridge all coverage gaps and predict
a single gene structure with seven exons (green). An open
reading frame (orange) spans all the exons, and its trans-
lation identifies the gene as coding for a UDP-glucuronic
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acid decarboxylase. Of particular interest is identification
of the first intron (785 bases) as a U12-type intron with
AT–AC borders. The intron is in a coding region that is highly
conserved with an Arabidopsis homolog (At3g53520), and
the Arabidopsis gene also has a U12-type intron in the same
position (although none but the U12 signatures are preserved
in the intron sequences; see Zhu et al., 2003).
By including splice site scoring and preferences, GeneSeqer

can use even quite diverged ESTs to predict the correct gene
structure (in this case, the barley ESTs have an average sim-
ilarity score of only 0.72). For comparison, none of the other
programs we tried (sim4, BLAT, Spidey) produced any align-
ments for the same genomic DNA and EST (results shown
as Supplementary information at http://www.plantgdb.org/
AtGDB/prj/BXZ03B/atac/gs_sorted-output-Ex1_top.html).

Evaluation of spliced alignment accuracy
We have recently reported on the utility of spliced alignment
in correcting and refining A.thaliana genome annotation (Zhu
et al., 2003). As an independent assessment of the applicab-
ility and performance quality of GeneSeqer, here we evaluate
its accuracy relative to the AraSet test set compiled by Pavy
et al. (1999). All available Arabidopsis ESTs were mapped
onto the AraSet contigs using GeneSeqer default parameters.
Post-screening of the reported alignments was used to select
subsets of alignments satisfyingmore stringent match criteria.
Because the alignments with terminal ESTs correspond to
predicted transcript ends rather than coding region ends as
in the AraSet annotation, evaluations were made entirely on
the intron level, using standard performance measures (Pavy
et al., 1999).
The results are summarized in Table 1. With default para-

meters, the spliced alignment indicated 782 introns (compared
to 859 annotated introns in AraSet). Of these, 625 introns
coincided with annotated introns for a sensitivity of 0.728.
Assessment of specificity is less straightforward. First, spliced
alignment, unlike ab initio programs tested on AraSet, can
reveal introns in untranslated regions (UTRs). Here, 76 introns
were predicted outside of the CDS bounds annotated in
AraSet. A careful inspection indicated that this set contains
both UTR introns and introns of genes that were omitted in
the AraSet annotation (see below). A second problem is that
some of the overlapping introns may correspond to correctly
predicted alternative transcripts. Thus, the listed specificity
of 0.885 may be underestimating the actual specificity.
In order to clearly separate errors of the spliced alignments

from errors in the AraSet annotation, we evaluated a subset
of all predicted introns that satisfy very stringent alignment
quality criteria. Let Pd (Pa) and Sd (Sa) denote the splice
site score and local similarity score for each donor (acceptor)
site, respectively. Requiring Pd > 0.00002, Pa > 0.00002
and Sd > 0.95, Sa > 0.95 selects only introns with canon-
ical splice sites supported by EST matching with more than
97.5% identity in the flanking 50 exon bases. For this subset,

Table 1. GeneSeqer intron level performance evaluation relative to AraSet
(859 annotated introns)

Default∗ Canonical sites∗ High quality∗

Predicted introns 782 684 499
Predicted introns 76 42 28
in UTR†

Predicted introns 706 642 471
in CDS

Correct introns 625 609 463
Overlapping introns 64 32 8‡
Wrong introns 17 1 0
Missed introns 188 235 391
Specificity 0.885 0.949 0.983
Corrected specificity ≥0.895 ≥0.961 1.000
Sensitivity 0.728 0.709 0.539

∗Default, GeneSeqer default parameters; Canonical sites, predicted canonical introns
only; High quality, canonical introns with high sequence similarity of EST to flanking
exons; see text for details.
†Some of these introns are actually from unannotated genes; see text for details.
‡Listed in Table 2.

Table 2. Annotated introns in AraSet contradicted with high quality intron
predictions derived from EST spliced alignments

SeqID Annotated
intron

Predicted
intron

EST evidence∗ Alternative
splicing

5′ss 3′ss 5′ss 3′ss
seq06 5753 5885 5764 5885 gi:8695314 N
seq53 3795 3708 3795 3735 gi:8715801 Y
seq62 2139 2351 2106 2351 gi:1054038 Y†
seq72 6486 6656 6481 6656 gi:4714042 Y
seq73 2232 2078 2258 2091 gi:19828992 N
seq73 3515 3398 3515 3407 gi:19868516 N
seq81 4016 3985 4088 3985 gi:14580187 N
seq84 4759 5173 4759 5170 gi:19865385 N

∗Only oneEST is listed for each predicted intron; for details, see Supplementary informa-
tion at http://www.plantgdb.org/AtGDB/prj/BXZ03B/AraSet/AraSet-AtGDB.php
†See Figure 5.

463 of the 471 predicted introns within CDS bounds coin-
cide with the AraSet annotation. The remaining eight introns
were further scrutinized, and all seem authentic (Table 2). In
three cases (seq53, seq62 and seq72), the annotated introns are
supported by other ESTs, and thus the two conflicting coordin-
ate sets represent alternative splicing events. In the other five
cases, there is no EST support for the annotation, and thus the
EST-supported coordinates may be assumed to be the correct
annotation. With that correction, the specificity of GeneSeqer
high-quality intron prediction is 100%, as expected. Sensit-
ivity in this case dropped to just over 50%. For comparison,
exon level sensitivity and specificity were estimated at just
above and below 80%, respectively, for the best ab initio gene
prediction programs (Pavy et al., 1999).
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Sensitivity for the spliced alignment approach depends
mostly on the availability of ESTs. However, when using
non-cognate ESTs, we are also assessing the ability of the
program to use such data for accurate prediction. As dis-
played in Table 1, with GeneSeqer default parameters a gain
of about 20% in sensitivity is accompanied by a drop in spe-
cificity of about 10%. Restriction of the predicted intron set
to only canonical introns (without the additional requirement
for high-quality flanking exon matching) gives intermediate
values.
There were 28 introns in the high-quality subset that are

not located within the annotated CDS bounds and are thus
potential UTR introns. Further analysis indicates that some of
these introns are actually from genes that are not annotated
in AraSet. For example, three genes are annotated in AraSet
contig seq25, with a 4.4 kb ‘intergenic region’ between the
second and the third genes. The most recent Arabidopsis gen-
ome annotation suggests that there is a gene At5g63670 with
five exons in the ‘intergenic region’, supported by three full-
length cDNAs and three ESTs. Similar situations also occur in
the AraSet contigs seq30, seq41 and seq69. Supporting data
for all these cases are available as Supplementary informa-
tion at http://www.plantgdb.org/AtGDB/prj/BXZ03B/AraSet/
AraSet-AtGDB.php

Applications to rice genome annotation
To test the utility of GeneSeqer for annotation of the
rice genome, we analyzed a randomly selected rice BAC
(GenBank accession AP002487) in detail. Spliced alignment
results of the central 44 000 bases of the sequence are dis-
played as Supplementary information at http://www.plantgdb.
org/AtGDB/prj/BXZ03B/OsBAC/gs_sorted-output-Ex2_top.
html. Overall, spliced alignment confirmed six genes, only
one of which agrees with the current gene annotation provided
in the GenBank file. For each gene, a sufficient number of
ESTs from heterogeneous sources could be found to give a
complete tiling of the gene, supported by open reading frames
spanning all exons and showing high similarity to known
Arabidopsis gene products.

CONCLUSIONS
After genome sequencing and assembly, genome annota-
tion is the most critical task in the characterization of the
genetic blueprint of an organism. For all eukaryotic model
organisms that have been sequenced, the annotation efforts
have continued and are continuing for years after the ini-
tial sequence release. Thus, the human genome is still being
evaluated, and in particular, the abundance of alternative
splicing of human genes has only recently been appreci-
ated (Mironov et al., 1999; Modrek and Lee, 2002; Brett
et al., 2002). The annotation tasks for plant genomes currently
pose distinct challenges compared with vertebrate genome
annotation. First, EST and full-length cDNA availability is

much less for plants than for human beings and mouse. Cur-
rently, there are 501 000 wheat ESTs as the largest plant
collection, compared to more than five million for human
beings and 4 million for the mouse (see http://www.ncbi.
nlm.nih.gov/dbEST/dbEST_summary.html). Only 131 000
rice ESTs were publicly available at the time of preparing
this manuscript, less than the 179 000 Arabidopsis ESTs for
an about 3-fold smaller genome. Second, all plant genomes
surveyed to date are replete with gene duplications as a result
of both polyploidization and random segmental duplications
(e.g. Gaut, 2001; Blanc et al., 2003).
We have recently reported the mapping of all Arabidopsis

ESTs onto the Arabidopsis genome using GeneSeqer and
showed that about 65% of annotated gene locations had EST
evidence, with full coverage for about 23% of the genes
(Zhu et al., 2003). Here we have presented details of the
GeneSeqer algorithm with respect to the derivation of con-
sensus gene structures from multiple ESTs from potentially
hetereogeneous, diverged sources. A number of key dif-
ferences in the algorithm compared with other programs
geared toward fast alignment of cognate ESTs allow effi-
cient use of non-native EST resources. We believe this
will greatly aid in the annotation of plant genomes, par-
ticularly rice and maize. The GeneSeqer Web service at
PlantGDB (http://www.plantgdb.org/cgi-bin/GeneSeqer.cgi)
should allow any member of the plant research community
easy access to the annotation tools, andwehope that such com-
munity input will quickly improve the status of plant genome
annotation.

ACKNOWLEDGEMENTS
We would like to thank Dr Qunfeng Dong, Shannon
D.Schlueter and Michael E.Sparks for critically reading the
manuscript and for helpful discussions. V.B. was supported in
part by NSF grants DBI-9872657 and DBI-0110254.

REFERENCES
Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z.,
Miller,W. and Lipman,D.J. (1997) Gapped BLAST and PSI-
BLAST: a new generation of protein database search programs.
Nucleic Acids Res., 25, 3389–3402.

Blanc,G., Hokamp,K. and Wolfe,K.H. (2003) A recent polyploidy
superimposed on older large-scale duplications in theArabidopsis
genome. Genome Res., 13, 137–144.

Boguski,M.S., Lowe,T.M. and Tolstoshev,C.M. (1993) dbEST–
database for ‘expressed sequence tags’. Nat. Genet., 4,
332–333.

Bouck,J., Yu,W., Gibbs,R. andWorley,K. (1999)Comparisonof gene
indexing databases. Trends Genet., 15, 159–162.

Brendel,V. and Kleffe,J. (1998) Prediction of locally optimal splice
sites in plant pre-mRNA with applications to gene identification
in Arabidopsis thaliana genomic DNA. Nucleic Acids Res., 26,
4748–4757.

1168

http://www.plantgdb.org/AtGDB/prj/BXZ03B/AraSet/
http://www.plantgdb
http://www.ncbi
http://www.plantgdb.org/cgi-bin/GeneSeqer.cgi


Gene structure prediction from consensus spliced alignment

Brett,D., Pospisil,H., Valcarcel,J., Reich,J. and Bork,P. (2002)
Alternative splicing and genome complexity. Nat. Genet., 30,
29–30.

Brunak,S., Engelbrecht,J. and Knudsen,S. (1991) Prediction of
human mRNA donor and acceptor sites from the DNA sequence.
J. Mol. Biol., 220, 49–65.

Deutsch,M. and Long,M. (1999) Intron–exon structures of euka-
ryotic model organisms. Nucleic Acids Res., 27, 3219–3228.

Florea,L., Hartzell,G., Zhang,Z., Rubin,G.M. and Miller,W. (1998)
A computer program for aligning a cDNA sequence with a
genomic DNA sequence. Genome Res., 8, 967–974.

Gaut,B.S. (2001) Patterns of chromosomal duplication in maize and
their implications for comparative maps of the grasses. Genome
Res., 11, 55–66.

Gelfand,M.S., Mironov,A.A. and Pevzner,P.A. (1996) Gene recogni-
tion via spliced sequence alignment. Proc. Natl Acad. Sci., USA,
93, 9061–9066.

Gusfield,D. (1997) Algorithms on Strings, Trees, and Sequences:
Computer Science and Computational Biology. Cambridge
University Press, New York, pp. 152–155.

Haas,B.J., Delcher,A.L., Mount,S.M., Wortman,J.R., Smith,R.K.,Jr,
Hannick,L.I., Maiti,R., Ronning,C.M., Rusch,D.B., Town,C.D.,
Salzberg,S.L. and White,O. (2003) Improving the Arabidopsis
genome annotation using maximal transcript alignment assem-
blies. Nucleic Acids Res., 31, 5654–5666.

Haas,B.J., Volfovsky,N., Town,C.D., Troukhar,M., Alexandrov,N.,
Feldmann,K.A., Flavell,R.B., White,O. and Salzberg,S.L. (2002)
Full-length messenger RNA sequences greatly improve genome
annotation. Genome Biol. 3, research 0029.1–0029.12.

Hebsgaard,S.M., Korning,P.G., Tolstrup,N., Engelbrecht,J.,
Rouzé,P. and Brunak,S. (1996) Splice site prediction in
Arabidopsis thaliana pre-mRNA by combining local and global
sequence information. Nucleic Acids Res., 24, 3439–3452.

Huang,X., Adams,M.D., Zhou,H. and Kerlavage,A.R. (1997) A tool
for analyzing and annotating genomic sequences. Genomics, 46,
37–45.

Kalyanaraman,A., Aluru,S., Kothari,S. and Brendel,V. (2003) Effi-
cient clustering of large EST data sets on parallel computers.
Nucleic Acids Res., 31, 2963–2974.

Kan,Z., Rouchka,E.C., Gish,W.R. and States,D.J. (2001)Gene struc-
ture prediction and alternative splicing analysis using genomically
aligned ESTs. Genome Res., 11, 889–900.

Kass,R.E. andRaftery,A.E. (1995)Bayes Factors. J. Am. Stat. Assoc.,
90, 377–395.

Kent,W.J. (2002) BLAT—the BLAST-like alignment tool. Genome
Res., 12, 656–664.

Liang,F., Holt,I., Pertea,G., Karamycheva,S., Salzberg,S. and
Quackenbush,J. (2000) An optimized protocol for analysis of EST
sequences. Nucleic Acid Res., 28, 3657–3665.

Manber,U. and Myers,G. (1993) Suffix arrays: a new method for
on-line string searches. SIAM J. Comput., 22, 935–948.

Mathé,C., Sagot,M.F., Schiex,T. and Rouzé,P. (2002) Current
methods of gene prediction, their strengths and weaknesses.
Nucleic Acids Res., 30, 4103–4117.

Mironov,A.A., Fickett,J.W. and Gelfand,M.S. (1999) Frequent
alternative splicing of human genes.Genome Res., 9, 1288–1293.

Modrek,B. andLee,C. (2002)Agenomic viewof alternative splicing.
Nat. Genet., 30, 13–19.

Mott,R. (1997) EST_GENOME: a program to align spliced DNA
sequences to unspliced genomic DNA.Comput. Appl. Biosci., 13,
477–478.

Murakami,K. andTakagi,T. (1998)Gene recognition by combination
of several gene-finding programs. Bioinformatics, 14, 665–675.

Ogasawara,J. and Morishita,S. (2002) Fast and sensitive algorithm
for aligning ESTs to human genome. In Proceedings of the First
IEEE Computer Society Bioinformatics Conference. Stanford,
California, pp. 43–53.

Pavy,N., Rombauts,S., Déhais,P., Mathé,C., Ramana,D.V., Leroy,P.
and Rouzé,P. (1999) Evaluation of gene prediction software using
a genomic data set: application toArabidopsis thaliana sequences.
Bioinformatics, 15, 887–899.

Pearson,W.R. and Lipman,D.J. (1988) Improved tools for biological
sequence comparison.Proc. Natl Acad. Sci., USA, 85, 2444–2448.

Pertea,G., Huang,X., Liang,F., Antonescu,V., Sultana,R.,
Karamycheva,S., Lee,Y., White,J., Cheung,F., Parvizi,B.,
Tsai,J. and Quackenbush,J. (2003) TIGR gene indices clustering
tools (TGICL): a software system for fast clustering of large EST
datasets. Bioinformatics, 19, 651–652.

Pertea,M., Lin,X. and Salzberg,S.L. (2001)GeneSplicer: a new com-
putational method for splice site prediction. Nucleic Acids Res.,
29, 1185–1190.

Rogic,S., Mackworth,A.K. and Ouellette,F.B. (2001) Evaluation of
gene-finding programs on mammalian sequences. Genome Res.,
11, 817–832.

Sakharkar,M., Long,M., Tan,T.W. and de Souza,S.J. (2000) ExInt:
an exon/intron database. Nucleic Acids Res., 28, 191–192.

Salzberg,S.L. (1997) A method for identifying splicing sites and
translational start sites in eukaryotic mRNA. Comput. Appl.
Biosci., 13, 365–376.

Schlueter,S.D., Dong,Q. and Brendel,V. (2003) GeneSeqer@
PlantGDB—gene structure prediction in plant genomes. Nucleic
Acids Res., 31, 3597–3600.

Sharp,P.M. and Matassi,G. (1994) Codon usage and genome evolu-
tion. Curr. Opin. Genet. Dev., 4, 851–860.

Snyder,E.E. and Stormo,G.D. (1995) Identification of protein coding
regions in genomic DNA. J. Mol. Biol., 248, 1–18.

Usuka,J. and Brendel,V. (2000) Gene structure prediction by spliced
alignment of genomic DNA with protein sequences: increased
accuracy by differential splice site scoring. J. Mol. Biol., 297,
1075–1085.

Usuka,J., Zhu,W. and Brendel,V. (2000) Optimal spliced align-
ment of homologous cDNA to a genomic DNA template.
Bioinformatics, 16, 203–211.

Wheelan,S.J., Church,D.M. andOstell,J.M. (2001) Spidey: a tool for
mRNA-to-genomic alignments. Genome Res., 11, 1952–1957.

White,O., Soderlund,C., Shanmugan,P. and Fields,C. (1992)
Information contents and dinucleotide composition of plant intron
sequences vary with evolutionary origin. Plant Mol. Biol., 19,
1057–1064.

Zhu,W. and Brendel,V. (2003) Identification, characterization,
and molecular phylogeny of U12-dependent introns in the
Arabidopsis thaliana genome. Nucleic Acids Res., 31,
4561–4572.

Zhu,W., Schlueter,S.D. and Brendel,V. (2003) Refined annotation
of the Arabidopsis thaliana genome by complete EST mapping.
Plant Physiol., 132, 469–484.

1169


