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ABSTRACT
Motivation: The vast majority of introns in protein-coding genes of
higher eukaryotes have a GT dinucleotide at their 5′-terminus and
an AG dinucleotide at their 3′ end. About 1–2% of introns are non-
canonical, with the most abundant subtype of non-canonical introns
being characterized by GC and AG dinucleotides at their 5′- and 3′-
termini, respectively. Most current gene prediction software, whether
based on ab initio or spliced alignment approaches, does not include
explicit models for non-canonical introns or may exclude their predic-
tion altogether. With present amounts of genome and transcript data,
it is now possible to apply statistical methodology to non-canonical
splice site prediction. We pursued one such approach and describe
the training and implementation of GC-donor splice site models for
Arabidopsis and rice, with the goal of exploring whether specific mod-
eling of non-canonical introns can enhance gene structure prediction
accuracy.
Results: Our results indicate that the incorporation of non-canonical
splice site models yields dramatic improvements in annotating genes
containing GC–AG and AT–AC non-canonical introns. Comparison
of models shows differences between monocot and dicot species,
but also suggests GC intron-specific biases independent of taxo-
nomic clade. We also present evidence that GC–AG introns occur
preferentially in genes with atypically high exon counts.
Availability: Source code for the updated versions of GeneSeqer
and SplicePredictor (distributed with the GeneSeqer code) is
available at http://bioinformatics.iastate.edu/bioinformatics2go/gs/
download.html. Web servers for Arabidopsis, rice and other plant
species are accessible at http://www.plantgdb.org/PlantGDB-cgi/
GeneSeqer/AtGDBgs.cgi, http://www.plantgdb.org/PlantGDB-cgi/
GeneSeqer/OsGDBgs.cgi and http://www.plantgdb.org/PlantGDB-
cgi/GeneSeqer/PlantGDBgs.cgi, respectively. A SplicePredictor web
server is available at http://bioinformatics.iastate.edu/cgi-bin/sp.cgi.
Software to generate training data and parameterizations for Bayesian
splice site models is available at http://gremlin1.gdcb.iastate.edu/
∼volker/SB05B/BSSM4GSQ/
Contact: vbrendel@iastate.edu
Supporting information: http://gremlin1.gdcb.iastate.edu/∼volker/
SB05B/

INTRODUCTION
Most genes in higher eukaryotic organisms contain intervening
sequences (‘introns’), which must be precisely excised from the
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pre-mRNA transcript prior to being translated into a functional
protein. The 5′-terminus of an intron is commonly known as the
donor site, whereas the 3′-terminus is referred to as the acceptor
site. These terms correlate with the roles of these sites in the bio-
chemical reactions underlying the process of splicing, as catalyzed
by the spliceosome. Most introns belong to the class of canonical
introns, characterized by a GT donor dinucleotide (first two bases
of the intron) and an AG acceptor dinucleotide (last two bases of
the intron), and are processed by the U2-type splicing apparatus
(Burge et al., 1999; Reddy, 2001). The most common deviations
from these intron types are those that have GC donors and AG accept-
ors. In all eukaryotic species studied so far, these introns make up
∼1% of all introns and are presumably also processed by the U2-
type spliceosome (Bursetet al., 2000). More recently, a second type
of spliceosome has been identified which recognizes the so-called
U12-type introns. These introns share a highly conserved donor
site consensus [GA]T/ATCCTT (where [GA] means G or A and
‘/’ indicates the exon/intron border) and a conserved branch point
motif CCTTAAC (reviewed by Patel and Steitz, 2003).

Many recent studies have discussed the occurrence and splicing
of U12-type introns as well as their potential functions and phylo-
genetic origin (Burgeet al., 1998; Dietrichet al., 2001; Lynch
and Richardson, 2002; Patelet al., 2002; Zhu and Brendel, 2003).
U12-type introns occur almost invariably in genes with other U2-type
introns, with no significant over-representation in any particular
functional gene class, appear less common among short introns and
may function in post-transcriptional regulation of gene expression.
Evolutionarily, they are thought to have an ancient origin, with loss
and conversion to U2-type accounting for their sparse occurrence in
modern genomes.

Comparatively little attention has been devoted to introns with
GC-donors. Thanaraj and Clark (2001) described statistical fea-
tures of human GC–AG alternative intron isoforms. Kitamura-
Abe et al. (2004) identified several hundred GC–AG introns in
the human, mouse, fruit fly,Arabidopsis and rice genomes and
provided a descriptive analysis of mono- and dinucleotide frequen-
cies around the splice sites. Their results suggest that GC-donors
may show a stronger consensus to maximize base pair formation
with complementary positions in the U1 snRNA.

The ability to computationally predict splice sites in pre-mRNA
tests our theoretical understanding of the sequence features recog-
nized by the splicing machinery. Several well-supported computa-
tional approaches to splice site prediction in pre-mRNA sequences
are available, including NetGene2 (Brunaket al., 1991; Hebsgaard
et al., 1996), SplicePredictor (Brendel and Kleffe, 1998; Brendel
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et al., 2004), and GeneSplicer (Perteaet al., 2001). Because all these
approaches require large amounts of trusted exon/intron borders for
training that have heretofore not been accessible, the available pro-
grams have largely excluded prediction of non-canonical sites. Of
the above programs, only NetGene2 predicts GC-donors. SplicePre-
dictor optionally allows scoring of non-canonical splice sites as if
the terminal dinucleotide matched the consensus. Similarly, most
gene structure prediction tools, whether based onab initio or spliced
alignment approaches, have not incorporated explicit models for
non-canonical introns or preclude their prediction altogether.

In the current study, we pursue the characterization and predic-
tion of GC–AG introns in plant pre-mRNAs. The motivation for
this study derives from the availability of two complete plant gen-
omes, representing dicotylodonous and monocotylodonous plants
(Arabidopsis and rice). Given the large numbers of public full-length
cDNAs and ESTs for these genomes, genome-wide assessment of
the occurrence of non-canonical introns should now approximate the
final picture very closely. We present general software for the estima-
tion of Bayesian statistical models for splice site prediction (Brendel
et al., 2004) from reliable spliced alignments of (full-length) cDNAs.
Using the models for exon/intron junction prediction in spliced align-
ments, we show that GC–AG introns can be confidently predicted
from cDNA to genomic DNA matches even in the presence of consid-
erable sequence divergence. These models could also be incorporated
into ab initio gene structure prediction software and should aid in
closing the annotation gap for both model and emerging genomes
(Mathéet al., 2002; Schlueteret al., 2005).

SYSTEMS AND METHODS

Training data
We accumulated intron data for two model plant species,Arabidopsis
thaliana and Oryza sativa as follows. All available full-length cDNA
sequences for each species (64 840 entries forArabidopsis and 32 136
entries for rice) were aligned to their cognate genomes [assembly ver-
sion 5 for Arabidopsis (Wortman et al., 2003) and pseudochromosome
assembly version 3.0 for rice (Yuanet al., 2003)] using the GeneSeqer
spliced alignment tool (Brendelet al., 2004). These data can be accessed
at http://gremlin1.gdcb.iastate.edu/∼volker/SB05B/original_alignments/.

For model training, we considered only gene structures such that all tran-
script sequence(s) delimiting them aligned with a perfect overall sequence
similarity score (1.0), allowing a very high degree of confidence that
exon/intron borders in our training data were correctly resolved. We extrac-
ted all exons and introns and classified them into phase 1, 2 or 0, where an
intron is in phase 1 if it falls between two codons, phase 2 if it falls between
the first and second positions of a codon and phase 0 if it falls between the
second and third positions. Only the coding regions of exons are considered
(according to the putative translation product of the gene), so that the first
exon of any gene is by default classified as phase 1. For all other exons, their
phase corresponds to that of the upstream intron.

For each of the three phase classes we identified introns with GC–AG
termini and extracted from the genomic templates, for both donor and acceptor
termini, 50 nt upstream through 50 nt downstream. Redundant entries were
removed. In a similar way we compiled sequence composition data for false
within-exon (for the three different phases) and within-intron GC donor and
AG acceptor sites. Random sampling of these data after removing redundant
entries produced sample sizes equal to those of the corresponding true donor
and acceptor site data; the within-intron false sites were randomly sampled
to the size of the largest of the three true phase classes. Sizes of the training
data corpora are shown in Table 1. Consistent with previous observations
(Ruvinskyet al., 2005), most introns fall into the phase 1 class.

Table 1. Classification and counts of cDNA-confirmed introns

Totala GT–AG GC–AG Others

Arabidopsis thaliana 67 767 66 733 (98.47%) 721 (1.06%) 313 (0.46%)
TD phase 1 37 904 476
TD phase 2 14 126 133
TD phase 0 14 703 112

Oryza sativa 68 199 65 391 (95.88%) 1103 (1.62%) 1705 (2.50%)
TD phase 1 36 571 644
TD phase 2 14 310 270
TD phase 0 14 510 189

aTotal counts of each intron type are given for bothArabidopsis and rice. Relative
abundances are indicated in parentheses. TD, training data (see Systems and Methods
section).

These data were then used to parameterize new Bayesian splice site
models for GC–AG introns as described previously (Brendelet al.,
2004). Our software to generate such training datasets and paramet-
erizations from GeneSeqer alignment data and genomic template files
is available free of charge for academic or other non-profit use at
http://gremlin1.gdcb.iastate.edu/∼volker/SB05B/BSSM4GSQ/.

Information plots and pictograms
It has previously been noticed that there is a stricter adherence to a con-
sensus donor splice site sequence in GC–AG introns than in GT–AG ones
(Bursetet al., 2000; Kitamura-Abeet al., 2004). Pooling all sets of cDNA-
confirmed training introns (Table 1), we computed the information content
for two regions of interest—15 bases upstream through 20 bases downstream
of the donor sites and 20 bases upstream through 15 bases downstream of the
acceptor sites—using the following formula:

Ii = 2 +
∑

B∈(A,C,G,T)

fiB log2(fiB)

wherei indexes each position in the aligned sequences, andfiB is the fre-
quency of baseB in position i (White et al., 1992; Rogan and Schneider,
1995).

Splice site probability models
Using the Bayesian splice site model framework first described in Salzberg
(1997) and later adapted for use by GeneSeqer in Brendelet al. (2004), we
trained models for GC donor sites of GC–AG introns inArabidopsis and
rice. Briefly, this consisted of tabulating dinucleotide relative frequencies
over the 102 positions of interest for the donor sites, for seven classes of
training data corresponding to seven alternative hypotheses to be evaluated
using Bayes rule. The following parameter smoothing technique was used
to avoid problematic zero-probability transition probabilities in our models
owing to unobserved data, i.e. to emulate ‘pseudocounts’ (zero-probability
transition probabilities are necessary when transitioning into and out from
the donor or acceptor dinucleotides and were not adjusted in this process).
Dinucleotide frequencies at each position over the training region can be
construed as a 4× 4 matrix, where rows correspond to the mononucleotide
being departed from and columns correspond to that being transitioned into.
If certain dinucleotides were not observed at various positions in the training
data, then this would erroneously produce rows of zero-likelihood transition
probabilities in the matrices; for such cases, we set all four probabilities to
0.25. Otherwise, if any dinucleotide transition probability in a row was below
a threshold of 0.0005, then we set it toPfix = 0.05, and all non-zero values in
the row were adjusted toPnew = Pold ∗ (1−4∗Pfix)+Pfix to produce a valid
probability mass distribution, wherePold refers to the unadjusted parameter.
We elected to use 0.05 forPfix as empirically it gave the most reasonable
results of a variety of values we tested (data not shown).
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Fig. 1. Arabidopsis information content plots. Information content plots were produced for 15 bases upstream through 20 bases downstream of GT and GC
donor dinculeotides, and 20 bases upstream through 15 bases downstream of AG acceptor dinucleotides in GC–AG and GT–AGArabidopsis introns identified
in the training data set (see Table 1).

Comparison of splice site models
The Bayesian models described above each yield 49∗ 16 first order Markov
transition probabilities going into the nucleotide preceding the splice site
dinucleotide and the same number of probabilities going out of the nucleotide
following it. We considered six models in total: species-specific GT donor
models of GT–AG introns trained forArabidopsis, rice, maize andMedicago
truncatula, and the GC donor models forArabidopsis and rice. To compare
the different models, we considered these parameters in order as components
of 784-dimensional vectors and calculated distances between the models as
the Euclidean distance between specific component ranges of these vectors.
Inspection of the information content plots in Figures 1 and 2 indicate that
there is significant loss of signal roughly five sites before and after the donor
dinucleotides. However, we wanted to determine if there were distinct patterns
of dinucleotide usage in these otherwise uninformative regions proximal to
the donor splice site. We first considered only the initial 720 elements of the
upstream parameter vectors, corresponding to 15 codons prior to the terminal
codon of the training exons. Because they are the most abundant category of
training exons (Table 1), phase 1 sites were used for this analysis. Phase 2
and 0 data produced similar results (data not shown; necessarily, all distances
must be calculated relative to the same codon phase, so pooling the sets is
inappropriate). For balance, only the final 720 elements of the downstream
parameter vectors were used, representing the final 45 positions of the training
region in the downstream intron. We also considered independently the 192
elements of the vectors corresponding to five positions upstream of the donor
dinucleotide through five positions downstream, with the modification that
the parameters for the GC-donor model donor dinucleotides involving the
C-position were shifted to resemble GT-donors, preventing trivially inflated
Euclidean distances when compared with GT-donor vectors. The exon, intron
and splice site distance matrices were used as input to the neighbor-joining

tree building program implemented in the PHYLIP package (Felsenstein,
2004, http://evolution.genetics.washington.edu/phylip.html).

Incorporation of splice site probability models in the
scoring of spliced alignments
The GeneSeqer spliced alignments are optimized with respect to several para-
meters, including weights for identities (default value: 2.0), mismatches
(default value:−2.0) and deletions (default value:−5.0 per gap symbol)
within exon alignments as well as logarithmically transformed exon/intron
state transition probabilities derived from splice site prediction values along
the genomic sequence (Usukaet al., 2000). Default donor site probabilities
are 0.00005 for any GT and 0.00002 for any GC or AT (similarly, 0.00005
for any AG and 0.00002 for any AC as potential acceptor sites), with all
other dinucleotides assigned a default donor or acceptor site probability of
0.000001. These default values are replaced by 2× (P − 0.5) whenever that
value is greater, whereP is the respective Bayesian a posteriori splice site
probability as derived from the training data described above. As a simple rule
to recognize U12-type introns, sites matching the U12-type intron consensus
sequence ATCCTT downstream of the GT or AT donor site dinucleotide in six
or five positions are scored 0.99 and 0.9, respectively (Brendelet al., 2004).

Programs used
We used a previous version of GeneSeqer (henceforth referred to as
‘GeneSeqerSTD’) as a prototype upon which to incorporate the new models.
The source code of this older version is available from the authors on request.
Source code for the revised GeneSeqer (version of June 13, 2005, referred to as
‘GeneSeqerGC’ for this paper) is available at http://bioinformatics.iastate.
edu/bioinformatics2go/gs/download.html. For spliced alignment assays, Sim4
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Fig. 2. Rice information content plots. Information content plots were produced for 15 bases upstream through 20 bases downstream of GT and GC donor
dinculeotides, and 20 bases upstream through 15 bases downstream of AG acceptor dinucleotides in GC–AG and GT–AG rice introns identified in the training
data set (Table 1).

(Florea et al., 1998) was downloaded from http://globin.cse.psu.edu/,
Spidey (Wheelanet al., 2001) was obtained from http://www.ncbi.nlm.nih.
gov/IEB/Research/Ostell/Spidey/spideyexec.html, BLAT (Kent, 2002) was
downloaded from http://www.soe.ucsc.edu/∼kent/src/ and Splign (Kapustin
et al., 2004, http://recomb04.sdsc.edu/posters/kapustinATncbi.nlm.nih.
gov_76.pdf) was obtained from ftp://ftp.ncbi.nlm.nih.gov/genomes/TOOLS/
splign/. Forab initio gene structure prediction, we used GENSCAN (Burge
and Karlin, 1997), obtained from http://genes.mit.edu/license.html, and
the FGENESH_GC (Solovyev, 2001) and Eukaryotic GeneMark.hmm (M.
Borodovsky and A. Lukashin, unpublished data) web servers, available at
http://www.softberry.com/berry.phtml?topic=fgeneshgc&group=programs&
subgroup=gfind and http://opal.biology.gatech.edu/GeneMark/eukhmm.cgi,
respectively. Forab initio splice site prediction, we compared the pub-
lished SplicePredictor version (Brendelet al., 2004), referred to here
as SplicePredictorSTD, with a new version incorporating the GC-donor
site models, referred to here as SplicePredictorGC (obtainable as part
of the GeneSeqer code distribution); SplicePredictorSTD was modi-
fied to score all GC dinucleotides in the same way as GT dinuc-
leotides. The NetGene2 program (Hebsgaardet al., 1996) was used
through the NetPlantGene mail server, accessible at http://www.cbs.dtu.dk/
services/NetPGene/mailserver.php. GeneSplicer (Perteaet al., 2001) gives
good results for canonical splice sites, but it does not predict non-canonical
splice sites and was therefore irrelevant to this study.

Test data
We accumulated 100 GC donor-containing test loci each forArabidopsis and
rice for purposes of comparing spliced alignment programs and assessing
ab initio gene structure and splice site prediction programs as follows. Using
the alignment data mentioned above, we identified Predicted Gene Locations
(PGLs) containing four or more introns, exactly one of which had to be of the

GC–AG variety, and such that one or more cDNA sequences supporting the
gene structure aligned with an overall similarity score of at least 0.975 but not
more than 0.995 (and none of the supporting cDNA evidence aligned with a
score<0.975). For each such PGL, we extracted the genic locus and 200 nt of
upstream and downstream flanking sequence directly from the corresponding
pseudochromosome. A total of 100 test loci were randomly sampled from
this population. For each test locus, an associated ‘pseudotranscript’ was
also parsed directly from the genome based on the gene structure coordinates
given in the PGL.

It was important that the test genes were not a part of our GC donor training
dataset, as this would produce artificially elevated accuracy assessments for
SplicePredictor with the newly trained models (SplicePredictorGC), which
would have been explicitly trained on the test data. Our criteria of hav-
ing at least one supporting cDNA sequence for a given PGL falling in the
0.975–0.995 similarity score range for a test locus precluded the gene from
having been incorporated in the training dataset, nevertheless still permit-
ted resolution of reliable gene structures for our test set using transcript
evidence.

We also compiled an independent control test set of 100 genes in
Arabidopsis and rice just as we compiled the GC–AG intron-containing
test sets, with the exception that the control genes had to have at least
four introns, but all of the GT–AG type. Similarly, sets of 25 U12 intron-
containing genes (with AT donor and AC acceptor dinucleotide termini)
for these two taxa were collected. All of these test datasets are available
at http://gremlin1.gdcb.iastate.edu/∼volker/SB05B/test_data/.

Spliced alignment assays
Performance assessments of spliced alignment software were conducted at the
0, 1, 5, 10 and 25% simulated transcript sequencing error levels by attempt-
ing to match mutated transcripts to their cognate genomic loci. To generate
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the mutated sequences for a given simulated sequencing error level ofX%,
X instances of either point substitution or insertion/deletion mutations (of
a length randomly selected from 1 to 3 residues) per 100 bases of the
pseudotranscript were induced. Software used for this task is available at
http://gremlin1.gdcb.iastate.edu/∼volker/SB05B/misc/mutseqer.c.

We compared GeneSeqerGC with GeneSeqerSTD, Splign, BLAT, Sim4
and Spidey. Exact program parameters used forArabidopsis and rice, includ-
ing the actual spliced alignment results, are provided as supporting data at
http://gremlin1.gdcb.iastate.edu/∼volker/SB05B/test_alignments/. At each
simulated sequencing error level, 25 replicates were produced, permit-
ting both accuracy and precision assessments for each program on the 100
Arabidopsis and rice test loci. These assays tested for competency in both
GC-donor site detection alone and complete gene structure resolution. The
latter was assessed on the intron level—a gene structure prediction was coun-
ted completely correct whenever all predicted intron borders matched those
of the true gene structure.

Ab initio assays
We tested the GENSCAN, GeneMark.hmm and FGENESH-GCab initio
gene structure prediction and SplicePredictorGC, SplicePredictorSTD and
NetGene2ab initio splice site prediction programs on the GC–AG and AT–
AC test loci to determine if any of these software were capable of annotating
known GC donors or AT–AC introns, respectively. As mentioned above,
SplicePredictorSTD was modified to score all GC dinucleotides in the same
way as GT dinucleotides. For the gene structure prediction tools, we also
assessed each program’s ability to delineate complete gene structures.

Identification of GC–AG introns in Arabidopsis and rice
After incorporation of the GC–AG models into GeneSeqerGC, we reannot-
ated theArabidopsis and rice genomes using full-length cDNA sequences.
We considered only introns derived from gene structures such that all cDNA
sequences mapping to a gene yielded an overall score not less than 0.95. For
Arabidopsis, of a total of 70 803 introns, 69 474 (98.12%) were of GT–AG
type, 776 (1.10%) were of GC–AG type and 553 (0.78%) were of other types.
For rice, of a total of 71 099 introns, 65 337 (91.90%) were of GT–AG type,
1804 (2.54%) were of GC–AG type and 3958 (5.57%) were of other types.
These results show higher proportions of GC–AG and other type introns relat-
ive to those identified in the training data set described in Table 1, particularly
for rice. This probably results from a combination of incorporation of explicit
GC–AG models in GeneSeqerGC and the lower stringency used to cull this
dataset (overall score of 0.95 or greater versus 1.0 used to compile training
data).

Gene Ontology (GO) annotation
To test whether GC–AG intron containing genes have preferential occur-
rence in particular functional classes of genes, we evaluated the dis-
tribution of GOslim terms (Berardiniet al., 2004; downloaded from
ftp://ftp.arabidopsis.org/home/tair/Ontologies/Gene_Ontology/) associated
with a set of 622 annotatedArabidopsis genes (Wortmanet al., 2003), each
containing at least one GC–AG intron confirmed by our reannotation of the
Arabidopsis genome, described below. Significance of the distribution was
evaluated by random sampling of same-size sets of non-GC–AG intron con-
taining Arabidopsis genes. A particular GOslim category was regarded as
over- or underrepresented if the frequency of the term in the GC set was
in the top five or lower five values in comparison with 99 randomly drawn
non-GC sets.

RESULTS AND DISCUSSION

Information plots and pictograms
Information content profiles for donor and acceptor sites of
Arabidopsis and rice are shown in Figures 1 and 2, respectively.
These data support the notion of stricter adherence to a donor con-
sensus site in GC donors, promising good potential for statistical

Fig. 3. Neighbor-joining trees derived from donor site model-specific para-
meter vectors. at,Arabidopsis thaliana; os, Oryza sativa; mt, Medicago
truncatula; zm, Zea mays. GT, GT-donors; GC, GC-donors; e, exon
parameters; i, intron parameters; s, splice site parameters.

prediction. Information content profiles at acceptor sites are very
similar, in either species, between GT–AG and GC–AG intron types.
Furthermore, the superimposable acceptor site information content
profiles indicate that the elevated information content at GC donors
relative to GT donors is not an artifact owing to differing sample
sizes between our GT–AG and GC–AG intron populations. This lat-
ter observation suggests that, in biological systems, constraints on
the degree of adherence to a consensus acceptor sequence, for any
particular acceptor site, operate independently of whether a GT or
GC donor occurs upstream of it. The consensus sequences of GT–
AG and GC–AG donor sites are identical, with the exception of the
T ↔ C transition mutation (data not shown). This reduced combinat-
orial complexity simplifies incorporation of a GC donor model into
the framework of the GeneSeqer algorithm: when considering what
an appropriate donor site might be for a given intron, the algorithm
does not need to modify its procedures for selecting an appropri-
ate acceptor site. This also implies that the parameterizations for
acceptor sites in the Bayesian splice site models trained on GT–AG
data are sufficient for assessing acceptor sites in both intron types.

Differences between species-specific models
Figure 3 shows neighbor-joining derived topologies based on the
Euclidean distances between the parameter sets of the various donor
site models (see Systems and Methods section). For GT-donors,
exon, intron and splice site parameters cluster according to the
monocot/dicot divide. The GC-donor intron and splice site para-
meters ofArabidopsis and rice are nearest neighbors, closer to each
other than to the GT-donor intron parameters within the same taxo-
nomic clade. For the exon parameters, the GC-donor parameters
group with their taxonomic clade, but with long branch lengths rel-
ative to the close pairs of GT-donor parameters within each clade.
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Table 2. Accuracy of GC-donor site prediction

Program 0% 1%a 5% 10% 25%

Arabidopsis
GeneSeqerGC 100 99.72 (0.32) 99.76 (0.97) 95.92 (1.43) 80.48 (3.04)
GeneSeqerSTD 100 97.28 (1.32) 83.92 (2.58) 69.84 (3.01) 33.40 (3.49)
Splign 100 98.24 (1.17) 88.88 (2.22) 74.72 (2.61) 0.00 (0.00)
BLAT 100 95.64 (1.93) 74.84 (3.45) 52.08 (4.03) 4.40 (1.74)
Sim4 92 89.72 (1.22) 80.36 (3.28) 67.92 (2.95) 17.60 (2.92)
Spidey 84 79.72 (1.41) 60.04 (2.72) 45.76 (3.39) 7.08 (1.68)

Rice
GeneSeqerGC 100 98.44 (0.97) 92.32 (1.45) 82.56 (6.83) 31.88 (15.20)
GeneSeqerSTD 100 97.40 (1.37) 80.72 (12.33) 57.60 (17.65) 10.36 (8.88)
Splign 99 97.88 (1.22) 86.40 (12.14) 66.08 (15.32) 0.00 (0.00)
BLAT 93 90.16 (1.08) 63.36 (15.01) 29.96 (15.19) 0.92 (0.83)
Sim4 91 90.16 (1.00) 73.24 (14.67) 57.52 (17.46) 20.60 (12.97)
Spidey 85 78.40 (9.67) 61.64 (17.04) 37.64 (17.28) 6.56 (6.33)

aPercent simulated sequencing error induced on pseudotranscripts (see Systems and Methods section for details). The table values give the mean and standard deviations (in parentheses)
of successful detection of known GC-donor sites in 100 GC–AG intron-containing test loci for each ofArabidopsis and rice over 25 replicates.

Table 3. Accuracy of overall GC–AG intron-containing gene structure prediction

Program 0% 1%a 5% 10% 25%

Arabidopsis
GeneSeqerGC 100 91.52 (2.37) 62.88 (3.94) 41.32 (3.60) 7.40 (1.75)
GeneSeqerSTD 100 89.96 (2.60) 55.84 (4.39) 32.72 (3.88) 3.52 (1.43)
Splign 97 88.12 (2.53) 58.68 (4.07) 22.08 (2.70) 0.00 (0.00)
BLAT 100 31.60 (4.28) 0.36 (0.45) 0.00 (0.00) 0.00 (0.00)
Sim4 88 79.44 (1.63) 51.56 (4.17) 25.80 (3.21) 0.04 (0.14)
Spidey 96 48.20 (4.38) 6.64 (2.31) 0.36 (0.45) 0.00 (0.00)

Rice
GeneSeqerGC 100 95.68 (1.83) 78.96 (6.83) 66.20 (9.66) 22.36 (15.43)
GeneSeqerSTD 100 94.80 (2.32) 71.00 (12.20) 47.16 (17.38) 6.24 (8.80)
Splign 90 87.60 (1.50) 72.36 (11.83) 50.36 (15.65) 2.56 (5.49)
BLAT 83 71.92 (7.63) 34.88 (17.72) 10.64 (11.32) 3.40 (4.11)
Sim4 79 78.00 (0.97) 60.64 (14.75) 47.08 (16.89) 13.28 (12.56)
Spidey 84 73.36 (10.04) 46.36 (17.51) 23.64 (15.89) 2.56 (5.49)

aPercent simulated sequencing error induced on pseudotranscripts (see Systems and Methods section for details). The table values give the mean and standard deviation (in parentheses)
of successful detection of entire gene structure in 100 GC–AG intron-containing test loci for each ofArabidopsis and rice over 25 replicates.

These results underscore not only compositional differences between
monocots and dicots, but in particular they suggest considerable
biases associated with GC–AG intron and GC-donor splice site
dinucleotide compositions relative to their GT–AG counterparts. It
is unclear whether these biases reflect evolutionary history of this
class of introns, functional constraints on their splicing or overall
compositional biases of gene classes that harbor GC-donor introns
(see below).

Spliced alignment
We wanted to compare the performance of GeneSeqerGC to other
spliced alignment software on two levels: detection of known GC
donor splice sites and correct resolution of full gene structures.
Assessments were made using the 100 GC donor-containing spliced
alignment test loci forArabidopsis and rice described above. Results
of these respective experiments are presented in Tables 2 and 3. It is

seen that GeneSeqerGC significantly outperforms spliced alignment
programs without explicit GC-donor splice site models, with a>80%
GC-donor site detection rate even at the 10% sequence error level.
This rate is∼20% higher than the best of the other programs (Splign).
More than 40% of the entire gene structures are predicted correctly
at the same sequence error level. The increase in performance when
compared with GeneSeqerSTD demonstrates that the improvement
is because of the specific GC-donor site models, rather than other
features of the GeneSeqer algorithm.

To ensure that these improvements do not cause significant detri-
ment to the accurate spliced alignment-based annotation of a typical
eukaryotic gene containing exclusively GT–AG introns, we tested the
same set of spliced alignment programs on our GT–AG control test
data for competency at determining overall gene structures, the res-
ults of which are presented in Table 4. Comparison of GeneSeqerGC
with GeneSeqerSTD demonstrates that, when presented with a
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Table 4. Accuracy of overall gene structure prediction in a non-GC control set

Program 0% 1%a 5% 10% 25%

Arabidopsis
GeneSeqerGC 100 94.60 (1.50) 69.16 (3.91) 44.68 (3.79) 10.08 (1.74)
GeneSeqerSTD 100 94.68 (1.48) 69.80 (3.88) 46.12 (3.62) 11.04 (1.77)
Splign 100 96.16 (1.65) 66.92 (5.99) 25.84 (2.78) 0.00 (0.00)
BLAT 97 34.28 (5.42) 0.12 (0.22) 0.00 (0.00) 0.00 (0.00)
Sim4 97 91.36 (1.78) 64.20 (4.83) 34.80 (2.98) 0.00 (0.00)
Spidey 96 54.44 (4.20) 5.64 (1.71) 0.32 (0.44) 0.00 (0.00)

Rice
GeneSeqerGC 99 89.12 (1.78) 60.16 (3.12) 36.88 (2.61) 5.12 (1.26)
GeneSeqerSTD 100 90.56 (1.96) 62.76 (2.92) 39.28 (2.82) 6.44 (1.54)
Splign 100 92.00 (2.47) 67.32 (4.15) 25.16 (2.84) 0.00 (0.00)
BLAT 97 21.00 (5.08) 0.24 (0.47) 0.00 (0.00) 0.00 (0.00)
Sim4 99 90.72 (2.53) 64.96 (4.00) 31.72 (2.89) 0.00 (0.00)
Spidey 97 46.48 (3.87) 5.80 (2.04) 0.12 (0.22) 0.00 (0.00)

aPercent simulated sequencing error induced on pseudotranscripts (see Systems and Methods section for details). The table values give the mean and standard deviation (in parentheses)
of successful detection of entire gene structure in 100 test loci containing exclusively GT–AG introns for each ofArabidopsis and rice over 25 replicates.

Table 5. Accuracy of AT–AC intron prediction

Program 0% 1%a 5% 10% 25%

Arabidopsis
GeneSeqerGC 100 95.20 (2.68) 82.72 (4.48) 67.20 (6.31) 30.72 (7.61)
GeneSeqerSTD 100 95.20 (2.68) 83.36 (4.55) 69.76 (5.83) 32.80 (7.18)
Splign 96 93.44 (2.54) 84.80 (3.43) 62.24 (6.81) 0.00 (0.00)
BLAT 92 85.60 (2.80) 67.20 (5.94) 34.88 (6.34) 0.96 (1.22)
Sim4 28 27.52 (2.33) 26.88 (2.86) 20.48 (5.13) 4.64 (0.93)
Spidey 48 41.28 (2.88) 27.20 (4.20) 11.52 (4.87) 0.48 (0.93)

Rice
GeneSeqerGC 100 97.12 (2.38) 81.76 (6.42) 65.60 (7.23) 29.12 (6.02)
GeneSeqerSTD 100 96.96 (2.59) 81.12 (6.49) 66.40 (7.09) 31.36 (6.55)
Splign 96 97.28 (1.93) 83.52 (6.68) 66.08 (5.78) 0.00 (0.00)
BLAT 88 83.04 (2.83) 60.80 (5.94) 34.24 (5.83) 0.64 (1.05)
Sim4 12 12.96 (2.46) 16.48 (4.38) 18.24 (5.49) 3.84 (2.06)
Spidey 24 21.44 (1.79) 11.20 (3.43) 6.40 (3.33) 0.32 (0.77)

aPercent simulated sequencing error induced on pseudotranscripts (see Systems and Methods section for details). The table values give the mean and standard deviation (in parentheses)
of successful detection of entire gene structure in 25 AT–AC intron-containing test loci for each ofArabidopsis and rice over 25 replicates.

simulated sequencing error challenge, explicit modeling of GC–AG
introns does not generally prevent accurate annotation of GT–AG
intron-containing gene structures. Better performance relative to the
other programs reiterates the value of explicit splice site modeling.
The poorer performance statistics for all programs on this rice set
compared with the GC–AG intron containing set reported in Table 3
may be a sampling effect.

Spliced alignment detection of U12-type introns
To further probe the potential of gene structure prediction improve-
ments by incorporation of models for non-canonical splice sites,
we also assessed the ability of the spliced alignment programs to
annotate AT–AC U12-type intron-containing gene structures with
a test set of 25 genes (see Systems and Methods section). These
spliced alignment assays were conducted similar to their GC–AG
counterparts, with results presented in Tables 5 and 6 for AT–AC

intron detection (competency at determining both donor and acceptor
terminal dinucleotides) and complete gene structure resolution,
respectively. Splign and the GeneSeqer variants clearly outperform
the other programs. It should be noted that the slight performance dis-
crepancy between GeneSeqerGC and GeneSeqerSTD are probably
owing to noise generated by the GC–AG models, as all other aspects
of the programs are identical. The GeneSeqer U12-donor prediction
accuracy is more sensitive to sequencing errors than its accuracy for
GC-donors, which is as expected because the U12-donor site scores
are based on (near-)exact matching to the consensus U12 pattern
(Brendelet al., 2004).

Ab initio gene structure and splice site prediction for
GC–AG intron containing genes
We tested theab initio gene structure prediction programs
GENSCAN, GeneMark.hmm and FGENESH-GC for their ability to
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Table 6. Accuracy of overall AT–AC intron-containing gene structure prediction

Program 0% 1%a 5% 10% 25%

Arabidopsis
GeneSeqerGC 100 86.24 (4.99) 47.68 (5.23) 27.04 (6.58) 2.56 (2.54)
GeneSeqerSTD 100 86.08 (4.92) 48.16 (5.39) 27.52 (6.87) 2.56 (2.65)
Splign 96 84.16 (5.51) 53.44 (6.90) 16.16 (5.14) 0.00 (0.00)
BLAT 92 22.08 (5.31) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Sim4 24 21.12 (2.74) 14.08 (3.80) 6.08 (2.57) 0.00 (0.00)
Spidey 48 18.88 (5.39) 1.44 (1.59) 0.16 (0.56) 0.00 (0.00)

Rice
GeneSeqerGC 100 85.28 (6.30) 47.84 (9.58) 20.32 (6.81) 1.76 (1.63)
GeneSeqerSTD 100 85.76 (6.96) 47.52 (9.57) 21.60 (6.10) 2.08 (1.64)
Splign 96 86.88 (5.14) 48.80 (9.39) 17.60 (4.98) 0.00 (0.00)
BLAT 88 27.84 (6.97) 0.16 (0.56) 0.00 (0.00) 0.00 (0.00)
Sim4 12 11.52 (3.16) 8.64 (4.48) 5.12 (3.38) 0.00 (0.00)
Spidey 24 10.88 (2.36) 1.92 (1.83) 0.48 (0.93) 0.00 (0.00)

aPercent simulated sequencing error induced on pseudotranscripts (see Systems and Methods section for details). The table values give the mean and standard deviation (in parentheses)
of successful detection of entire gene structure in 25 AT–AC intron-containing test loci for each ofArabidopsis and rice over 25 replicates.

Table 7. Splice site prediction accuracy for GC-donors

Arabidopsis Rice
c TP FP Sn Sp TP FP Sn Sp

SplicePredictorSTD 6.0 96 281 0.96 0.25 81 579 0.81 0.12
12.0 88 31 0.88 0.74 77 85 0.77 0.48
15.0 71 4 0.71 0.95 74 41 0.74 0.64

SplicePredictorGC 6.0 95 147 0.95 0.39 82 456 0.82 0.15
12.0 93 19 0.93 0.83 82 36 0.82 0.69
15.0 86 9 0.86 0.91 82 10 0.82 0.89

NetGene2 80 7 0.80 0.92 31 4 0.31 0.89

Values are relative to the test sets of 100 genes ofArabidopsis and rice, each containing exactly one GC–AG intron (see Systems and Methods section).c, critical value for Bayesian
splice site prediction (Brendelet al., 2004); TP, true positive; FP, false positive; Sn (sensitivity)= TP/100, and Sp (specificity)= TP / (TP+ FP) (Burset and Guigó, 1996).

predict GC–AG introns on test sets of 100 genomic regions from
Arabidopsis and rice. Each region contains a gene with four or
more introns, exactly one of which is a cDNA-confirmed GC–AG
intron (see Systems and Methods section). GENSCAN and Gene-
Mark.hmm did not predict GC-donor sites, thus failing on all gene
structures. FGENESH-GC predicted 54% of theArabidopsis and
64% of the rice GC sites; however only 26% and 3% of the gene
structures in the two sets were predicted correctly in their entirety.

Table 7 gives results of splice site prediction algorithms on the
same GC–AG test dataset used in the spliced alignment assays.
The new GC-donor site models incorporated into SplicePredictor-
GC significantly reduce the false positive prediction rate (increase
specificity) in bothArabidopsis and rice compared with Splice-
PredictorSTD, which uses the strategy of treating each GC in the
input sequence in the same way as the GTs. The true positive recov-
ery rate (sensitivity) is about the same for both strategies. This result
is consistent with the general conservation of the GT-donor site signal
in GC-sites, but with stronger adherence to the consensus sequence
as discussed above. Prediction accuracy is lower in rice compared
with Arabidopsis, with the high false positive prediction rates in part

reflecting the longer intron lengths in rice (see below). NetGene2
with default settings shows high specificity, at the cost of diminished
sensitivity. The SplicePredictor programs give comparable results at
a high threshold for the critical valuec (Brendelet al., 2004). The
poor performance of NetGene2 on rice relative toArabidopsis is
most probably explained by the monocot to dicot differences dis-
cussed earlier; as NetGene2 only offersArabidopsis parameters,
those were used also on the rice sequences. Note also for rice the
dramatic drop in false positive predictions by SplicePredictorGC at
higherc-values, without loss in sensitivity. This results from the fact
that true GC-donors match well to a consensus signal and thus tend
to score very high.

Characterization of GC–AG introns within their gene
structure
We used the sets ofArabidopsis and rice genes with cDNA-confirmed
GC–AG introns to probe for possible significant features of the
underlying gene structures. In particular, we addressed the following
questions in comparison with non-GC–AG intron containing genes.
What is the average length and base composition of the GC–AG
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Fig. 4. Length distribution ofArabidopsis (at) and rice (os) introns with GT- and GC-donors. Size markers on thex-axis are in hundreds. Relative frequency
is given on they-axis.

introns? What is the average number of exons in these genes? Is
there any preference of the GC–AG introns to occur 5′- or 3′-most?

The average length of theArabidopsis GC–AG introns was found
to be 168 nt, compared with 159 nt for GT–AG introns; for rice, the
means are 691 and 386 nt. Figure 4 shows the length distributions in
detail. In general, rice has a higher frequency of long introns com-
pared withArabidopsis. Of note is the particularly high proportion
of long GC–AG introns in rice. The base composition of both classes
of introns is similar within each species, although the rice GC–AG
introns are slightly higher in G+C content. TheArabidopsis introns
have a strong bias for U (40.3% in GT–AG introns, compared with
35.2% for rice), consistent with previous observations for dicots and
monocots (Koet al., 1998).

Of the 622 distinct annotatedArabidopsis genes containing GC–
AG introns, 37 contained two GC–AG introns apiece, and only
one contained three GC–AG introns (At3g10380, putatively encod-
ing the exocyst complex component Sec8), the maximum number
encountered in this study for a single gene. We identified 168 putat-
ive rice orthologs of the GC–AG intron containingArabidopsis
genes. Pairs of rice andArabidopsis genes were considered ortholog-
ous if their translation products yielded reciprocally best BLASTP
(Altschulet al., 1997) hits at a threshold ofE < 10−15 and no similar
next-best hits. Eleven of these rice genes also had a GC–AG intron.
LOC_Os01g68330, the rice ortholog for At1g70610, has two GC–
AG introns. The genes are thought to encode chloroplast-associated
ABC transporters. At1g70610 has only one GC–AG intron. For the
better-annotatedArabidopsis genome, based on our data the fraction
of genes with GC–AG introns is<2.5% of all genes. Thus, conser-
vation of the GC–AG intron in 11/168 ortholog pairs is much more
than expected by chance, suggesting these introns may have existed
prior to the divergence of dicots and monocots.

The average exon count for the 622Arabidopsis GC–AG intron-
bearing genes is 12.18, compared with an average of 5.06 over all
annotatedArabidopsis genes. Of the identified 168 rice orthologs of
these genes, we determined, using the TIGR pseudomolecule ver-
sion 3.0 annotation, that they contain on average 12.13 exons per
gene, in comparison to an average of 5.89 exons per gene over all
rice genes. Thus there seems to be a distinct bias for GC–AG introns
to occur in genes with high exon count. Our analyses did not indic-
ate that GC–AG genes exhibit any form of polar selectivity within
gene structures, as their positions in their host genes were uniformly
distributed (data not shown).

Classification of GC–AG intron containing genes
As shown above, mutation of the C in a GC-donor to T will result in a
high-scoring GT-donor site that would be predicted to be an efficient
splicing site. Thus, it is an intriguing question whether GC-donors
merely represent tolerated mutations that are in equilibrium with
GT-donors. Alternatively, present day GC-donors may be remnants
of an evolutionary lineage, or there may be functional constraints
acting on the extant genomes that maintain these sites. If the GC-
donors represent tolerated mutations, then one would not expect a
particular bias for their association with specific classes of genes. To
test for such association, we derived the counts of GC–AG introns per
Arabidopsis gene class as defined by GOslim terms defining cellular
components (Berardiniet al., 2004). The statistical significance of
the observed counts was assessed by comparison with counts derived
for randomly sampled genes containing GT–AG introns only.

The results (Fig. 5) show that GC–AG intron-containing
Arabidopsis genes tend to be overrepresented in the chloroplast,
mitochondria, nucleus, plasma membrane, other membranes, other
cellular components and other cytoplasmic components and are less
frequently encountered than expected in the cellular component
unknown category. However, no clear bias emerged, and in view of
the premature state of the ontology assignations no firm conclusions
can be reached. The rice data, with ontology terms derived from their
presumedArabidopsis orthologs, gave a similar distribution (data not
shown).

CONCLUSIONS
Current genome annotation reflects the limitations of computational
tools available for the task. With increasingly available genome data,
some of these limitations can be overcome by more specific training
of the software. ForArabidopsis, our GeneSeqer spliced alignment
tool detected an additional 115 cDNA-confirmed GC–AG introns
over the currently annotated 661 cases. For rice, only 500 GC–AG
introns were previously annotated, and this study identified an addi-
tional 1304 instances. In practice, gene structure is predicted from
the consensus of multiple cDNA and EST alignments at a given
locus. This allows accurate gene structure prediction from spliced
alignment of heterogeneous transcripts, which is of great practical
importance for plant genome annotation given the relatively small
sets of available cDNAs and ESTs for any given species (Schlueter
et al., 2003). The demonstrated robustness of the GeneSeqer spliced
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alignments to sequence divergence is derived from the incorporation
of species-specific splice site prediction in the scoring of alignments.
The BSSM4GSQ software package should facilitate iterative train-
ing of updated and novel models for many species with emerging
genomic and cDNA sequence data. This in turn will generate more
reliable gene structure annotations for the study of the evolutionary
origins and functional significance of non-canonical introns.
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